FROM PREVIOUS NOTES:

"ends" on the axis at $(2\pi, 0)$

"ends" at its maximum (2π, 1)

FROM PREVIOUS NOTES:

graphing form:graphing form:y = Asink(x - b) + hy = Acosk(x - b) + h

Be sure that the equation is in graphing form where k (the coefficient of X) has been <u>factored out</u> of the parentheses. Then, identify and plot information in the following order:

vertical shift = h \rightarrow moves entire graph up or down

midline is y = h

reference line for sine/cosine graphs **amplitude = |\mathbf{A}|**

→ vertical stretch/compression that creates maximum and minimum values for sine and cosine

Note: if A < 0, then the graph will reflect (flip) across the x-axis

 \rightarrow a horizontal axis used as a

graphing form:

graphing form:

 $\mathbf{y} = \mathbf{Asink}(\mathbf{x} - \mathbf{b}) + \mathbf{h}$

y = Acosk(x - b) + h

vertical shift = h > moves entire graph up or down

- **midline is y = h** \rightarrow a horizontal axis used as a reference line for sine/cosine graphs
- **amplitude = |\mathbf{A}| \rightarrow \text{vertical stretch/compression that creates maximum** and minimum values for sine and cosine

Note: if A < 0, then the graph will reflect (flip) across the x-axis

period = $\frac{2\pi}{k}$, k > 0 \rightarrow the horizontal length of one full cycle (horizontal stretch/compression)

Note: if k > 1, then the period decreases

 $\frac{if \ 0 < k < 1, \ then \ period \ increases}{horizontal \ shift = b} \rightarrow or \ PHASE \ SHIFT: \ a \ horizontal \ translation \ (slide) \ of \ a \ trig \ function$

Note: frequency is the number of cycles that occur in one horizontal unit \rightarrow

See link for 5.3 notes on Rosenow's website:

In words:

- the **2** tells us it will be 2 times taller than usual, so Amplitude = 2
- the usual period is 2π , but in our case that is "sped up" (made shorter) by the **4** in 4x, so Period = $\pi/2$

2

- and the -0.5 means it will be shifted to the right by 0.5
- lastly the +3 tells us the center line is y = +3, so Vertical Shift = 3

<u>5-3 Notes/Examples:</u> Graphing sine/cosine

Sine is based on the y-coordinate for the unit circle.

Cosine is based on the x-coordinate for the unit circle.

Cosθ (0, 1) $\left(\frac{\pi}{2}, 0\right)$ $(\pi, -1)$ $\frac{3\pi}{2}$, 0 , $(2\pi, 1)$

Notes 5-3: Graphing sine/cosine

Amplitudeis the vertical expansion orcompression of the graph of a trig function.examples: $y = Asin\theta$ $y = -Asin\theta$ $y = -Acos\theta$

Amplitude = |A|

→maximum located at A
→minimum located at –A

3 IS THE DISTANCE FROM THE AXIS (MIDLINE) TO EACH MAXIMUM AND MINIMUM

 $Per = \frac{2\pi}{V} \rightarrow \frac{2\pi}{2} \rightarrow \pi$

Notes 5-3: Graphing sine/cosine

<u>Period:</u> The amount (interval) of time it takes to complete one cycle.

If y = sin kx or y = cos kx,

then period = $\frac{2\pi}{k}$, k > 0 **Note:** $y=\sin 3x \rightarrow k = 3$ $y=\sin \frac{x}{3} \rightarrow k = \frac{1}{3}$ *write given equation *factor k if possible *identify amp, per, vertical/horizontal shift *sketch graph across given interval

*write given equation *factor k if possible *identify amp, per, vertical/horizontal shift *sketch graph across given interval

